
 International Journal of Computer Trends and Technology Volume 71 Issue 10, 20-27, October 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I10P103 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Modular Monoliths: Revolutionizing Software

Architecture for Efficient Payment Systems in Fintech

Kalpesh Barde

Technical Leader, Fintech, CA, USA.

Corresponding Author : kbarde27@gmail.com

Received: 12 August 2023 Revised: 19 September 2023 Accepted: 03 October 2023 Published: 18 October 2023

Abstract - The evolution of software architecture has led to the emergence of various paradigms, including monolithic,

microservices, and the lesser-explored modular monolith architecture. This paper delves into the historical development of

these architectures, assessing their advantages and limitations, with a specific focus on their application in the fintech domain.

Through an in-depth literature review and case studies of organizations like Shopify, Root, and Google, the study evaluates the

potential of modular monolith architecture as the primary choice for developing efficient payment systems. By addressing the

research gaps in existing studies and comparing modular monoliths with traditional monolithic and microservices

architectures, this paper provides valuable insights for software developers, architects, and fintech industry professionals.

Keywords - Software design architecture, Monolithic architecture, Microservices architecture, Modular monolith software

architecture, Fintech domain.

1. Introduction
In the software development process, it is crucial to

consider software design architecture early on, particularly

during the planning and requirements-gathering stage. The

main reason is that architecture serves as the basis for the

entire software system and impacts all subsequent

development activities.[6] By prioritizing software design

architecture from the beginning and consistently refining it

throughout the development cycle, software teams can

increase their chances of delivering a high-quality software

system that meets the expectations and requirements of

stakeholders.[4] Therefore, it is important to study and assess

various types of software design architecture, such as

Monolithic architecture, Microservices architecture, and

Modular Monolithic architecture, to determine which

approach is most appropriate for a given project.

A monolithic architecture is a traditional software

program model built as a self-contained unified unit and

independent from other applications.[2] It is a unified,

massive computing network running off of a single code base

that connects every facet of the enterprise. One of the notable

benefits of this approach is its ability to deliver enhanced

performance compared to the microservices design,

particularly for applications characterized by low to

moderate traffic levels.[7] In addition, the application logic

and data access are all contained within a single process,

reducing the latency and network overhead associated with

microservices architecture.[7] However, at the same time,

making a change to this sort of architecture requires updating

the entire stack of code by accessing the code base and

building and deploying an updated version of the service-

side interface. This makes updates restrictive and time-

consuming.

In comparison, the microservice architectural style [1] is

an approach to developing a single application as a suite of

small services, each running in its own process and

communicating with lightweight mechanisms, often an

HTTP resource API. These services are built around business

capabilities and are independently deployable by fully

automated deployment machinery. There is a bare minimum

of centralized management of these services, which may be

written in different programming languages and use different

data storage technologies. This architectural style offers the

benefit of easy horizontal scaling of individual services,

which enhances the system’s ability to handle increased

loads and demands. Scaling specific services enables greater

resilience and flexibility, improving the system’s overall

performance. It enables developers to develop individual

services using different technologies and programming

languages. This makes it easier to adopt new technologies,

update the system and take advantage of new capabilities.

Finally, modular monolith architecture refers to a software

design approach where all the code resides within a single

codebase. This approach allows for quicker debugging of

issues while minimizing the complexities that often arise

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalpesh Barde / IJCTT, 71(10), 20-27, 2023

21

from using a microservices architecture. With modular

monolith architecture, the functionality is broken down into

multiple modules, making it easier to manage each module

individually. The approach also establishes clear rules for

accessing each module through strict interfaces, which helps

resolve many of the complexities that can arise in software

development. At present, several organizations such as

Shopify[8], Eurocommercial Properties (Estatio) [36],

Google [37] and Root [38], among others, are utilizing

modular monolith architecture for its benefits such as

simplified testing, streamlined deployment, and improved

system performance.

Currently, both monolithic and microservices designs

exhibit some limits in the domain of software development.

For instance, the former presents challenges in terms of

scalability, whereas the latter is plagued by concerns related

to latency and network congestion. Despite the existence of a

third technique known as modular monolithic architecture, it

has garnered relatively limited attention in the academic

research literature. The identified research gap pertains to the

limited availability of literature on the subject of modular

monolith. Consequently, this study aims to assess the

advantages and drawbacks associated with employing a

modular monolithic architecture as the predominant approach

for software application development within the fintech

sector.

2. Literature Review
2.1. Importance of Architecture in Software Design

The term’ software architecture’ (SA) was first coined in

the late 1960s, but one of the early pioneers of SA, Fritz

Bauer, argued as early as 1968 that SA should be given more

importance, even before the software was developed. In the

early days of software development, software systems were

relatively simple, and their architectures were

correspondingly straightforward. However, as software

systems have grown in size and complexity, so too has the

importance of software architecture. Today, software

architecture is recognized as a critical component of software

engineering, and many institutions have invested heavily in

its development and study.

One of the reasons for this is that software architecture

supports early design decisions that impact a system’s

development, deployment, and maintenance life. [4]

Moreover, it gives a basis for analysis of software systems’

behavior before the system has been built.[5] Getting the

early, high-impact decisions right is important to prevent

schedule and budget overruns.[4]

Software architecture has numerous benefits for

software design. First, it gives a clear vision of the system

and the components involved in it. It provides a solid

foundation for identifying gaps and areas that require

improvement in a given software. In addition, software

architecture provides stakeholders, developers, project

managers, user experience designers, quality

assurance/testers, and DevOps engineers with a clear

comprehension of the software’s capabilities and its intended

purpose. It helps to discern the distinction between software

that has reached the production-ready stage and software still

in the prototyping phase.

SA is also used as a blueprint or a foundation for a

software system. Organizations choose to implement it on

their own methodologies and styles, considering factors such

as business needs, cost, scalability, performance,

maintenance and support. Some examples of how

organizations use software architecture are microservices,

cloud computing, event-driven architecture, serverless

architecture, monoliths, and modular monoliths.

2.2. Microservices Architecture

Microservices is one of the software architectural

patterns that involves breaking down a single application into

multiple services or smaller applications.[1]

Each of these services can then be developed in any

programming language, which gives the software

engineering teams flexibility to develop independently using

their preferred programming language. Moreover, each of

these services can be deployed independently, offering

flexibility to the teams to scale up and scale down as

needed.[9] Despite this independence, all these services

communicate harmoniously to attain the application’s

purpose using well-defined API contracts.

The adoption of microservices architecture offers

numerous advantages, such as the smooth integration of

various technologies into a unified system, enhanced

scalability, increased operational efficiency, and simpler

deployment procedures [10]. Since it has emerged as a highly

appreciated architectural framework, there has been a

growing adoption of the microservices paradigm by

esteemed software consulting organizations and product

design enterprises. This particular methodology has been

empirically shown to significantly increase overall

productivity and enable the creation of highly successful

software products. Moreover, a multitude of non-traditional

software companies have both utilized and assessed this

architectural approach, resulting in significant benefits.

Microservices are commonly recognized as a suitable

architectural decision for systems deployed on cloud

infrastructures due to their ability to leverage the flexibility

and on-demand provisioning capabilities inherent in the

cloud paradigm. Significantly, several prominent companies,

including Netflix and SoundCloud, have effectively used the

microservices architectural methodology in cloud computing

settings, leading to numerous benefits [10].

Kalpesh Barde / IJCTT, 71(10), 20-27, 2023

22

 Image Source: docs.microsoft.com

The concept of microservices originated as a reaction to

the difficulties and shortcomings encountered in service-

oriented architectures (SOA) [11]. Service-Oriented

Architecture (SOA), which saw a surge in popularity during

the early 2000s, encountered challenges, including excessive

hype, inadequate suitability, and inconsistent definitions,

resulting in fruitless endeavours to implement it [12].

Microservices, frequently known as “SOA done correctly,”

present a novel methodology for constructing software

applications as collections of self-contained services that can

be deployed separately [13]. The utilization of this particular

architectural style offers various advantages, including

enhanced dynamism, improved modularity, facilitation of

distributed development, and seamless integration of diverse

systems [14]. The emergence of microservices can be

attributed to historical factors such as the growth of software

architecture, the widespread adoption of objects and services,

and the demand for enhanced agility, scalability, and

autonomy in software systems [15].

The microservices architecture enhances large-scale

software systems’ adaptability, scalability, and fault

tolerance. Nevertheless, this architectural paradigm is not

without its drawbacks. The migration from legacy systems to

microservices presents a significant challenge, involving

manual intervention, extensive time commitment,

susceptibility to errors, and substantial financial expenditure

[20]. Additionally, there are concerns related to escalated

security vulnerabilities due to the expanded attack surface

resulting from the disintegration of system functionalities

into cohesive, small-scale services [16]. Heightened

concurrency levels inherent in microservices also raise

issues, potentially leading to subtle programming errors like

race conditions, deadlocks, and data inconsistencies [17].

Furthermore, microservices pose complexities in

performance testing, making establishing a baseline

performance intricate and obtaining reliable performance

testing outcomes less straightforward [18]. The overall

intricacy of loosely connected microservice systems further

complicates the testing process, necessitating the utilization

of supplementary testing techniques and tools [19].

2.3. Monolith Architecture

Monolithic software architecture refers to a conventional

approach where all the different types of foundational

architectural elements of an application are integrated

together in a single unit.[21] It is considered an older

architectural style and is often seen as outdated [22]. It is

characterized by a lack of modularization and a tightly

coupled structure. The emergence of software architecture as

a field of study has brought attention to the need for better

organization and design of software systems. Different

architectural styles, such as client-server architecture and

module interconnection languages, have been developed to

address this. The goal is to improve understanding and

manage the complexity of software systems. However,

challenges still remain in achieving effective software

architecture, and there is ongoing research and development

in this area [23] [24] [25].

The significant landmarks in the evolution of monolithic

software architecture encompass the advent of diverse

architectural models, including monolithic architectures and

service-oriented architectures. Monolithic designs are widely

recognized as traditional and include consolidating all

essential application pieces under a singular component or

unit. Nevertheless, monolithic designs are frequently

regarded as antiquated, requiring architectural restructuring

to separate the user interface, business logic, and data layer.

Although monolithic systems have certain limits, they

Client
API

Gateway

 Service

 Service

 Service

 Service

Microservices

Management / Orchestration

DevOps

https://learn.microsoft.com/en-us/azure/architecture/includes/images/microservices-logical.png

Kalpesh Barde / IJCTT, 71(10), 20-27, 2023

23

possess several advantages, like reduced complexity in the

interaction between components and the convenience of

seeing an entire process within a single location. The use of

microservices-based architectures is regarded as a

contemporary trend in addressing the difficulties associated

with interoperability, replacing the traditional monolithic

systems.[29] [26]

The utilization of monolith architecture presents several

benefits. The strong relationship between domain entities

enables rapid initial growth.[3] In addition, the

implementation of monolithic architecture guarantees

consistent values of software metrics, such as complexity and

deployability, irrespective of the quantity of features

incorporated.[27] Monolith architecture offers simplicity,

reliability, and stability in software development and

operation.

A monolithic architecture possesses several drawbacks.

One such disadvantage pertains to the challenge of staying

abreast with novel development methodologies like DevOps,

which necessitate frequent deployments [3]. Another

drawback lies in the inflexibility and lack of scalability

inherent in monolithic architectures, for they are not readily

adaptable to evolving requirements and cannot be

independently scaled [28]. Monoliths also pose difficulties in

terms of code complexity and magnitude, rendering the

management and maintenance of the codebase more arduous

[27]. Furthermore, monolithic architectures encompass a

solitary database, which can give rise to complications when

transitioning to a microservice architecture wherein data

storage is decentralized [29]. Finally, the close coupling of

domain entities in a monolith can impede agility and

expedited development, in contrast to a modular or

microservice architecture [30].

 Image source: monolith architecture

2.3. Modular Monolith Architecture

A modular monolith software architecture entails the

division of business entities into separate modules or services

while still maintaining a comprehensive domain model. This

approach enables the rapid initial development of software

but does come with a drawback in terms of performance, as it

introduces costs related to the separation of business logic

and inter-service communication [3]. Conversely, Monolithic

software applications encompass all functionalities within a

single deployable unit, rendering them challenging to

comprehend and maintain as they mature. On the other hand,

microservice architectures advocate for the construction of

applications through smaller, loosely coupled functional

services [31]. A modular web content architecture presents a

separation between renderable content modules and the

primary web application, which in turn offers improved

flexibility and reusability [32].

The concept of modular monolith software architecture

was introduced within the context of transitioning from a

monolith to a microservices architecture. The transition to a

modular monolith is perceived as an intermediary step in the

overall process. This particular approach entails dividing the

business logic into separate modules, which are then

encapsulated through well-defined interfaces. The benefits of

utilizing a modular monolith include the ability to establish a

comprehensive domain model that facilitates efficient

development and a codebase that is more easily

maintainable. However, it is important to note that there are

certain trade-offs in performance due to the introduction of

inter-service communication. The migration effort and

performance challenges associated with transitioning to a

modular monolith are already quite significant. Therefore, it

is imperative for software architects to carefully consider

Users

Threads

Posts

node.js API Service

Users

Threads

Posts

Users Service

Threads Service

Posts Service

1. MONOLITH 2. MICROSERVICES

https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/

Kalpesh Barde / IJCTT, 71(10), 20-27, 2023

24

these trade-offs and meticulously plan the migration process

accordingly [21].

The popularity of modular monolith software

architecture can be attributed to several factors. Firstly, it

facilitates the incorporation of a comprehensive domain

model, where domain entities are closely interconnected,

thus enabling rapid development [3]. Secondly, it offers a

means to encapsulate business logic within modules and/or

services, featuring well-defined interfaces, thereby

promoting modularity and reusability [31].

 Source - modular monolith

Thirdly, it presents a progressive migration pathway

from a monolith to a microservice architecture, allowing for

a gradual transition and minimizing the impact on migration

effort and performance [32]. Lastly, it tackles the challenges

associated with the maintenance and comprehension of aging

monolithic applications by advocating for smaller, loosely

coupled functional services that are easier to maintain [33].

Utilizing a modular monolith software architecture

presents various benefits, such as incorporating intricate

domain models and the ability to reuse domain entities.

However, it also entails a drawback in terms of performance.

The current business landscape emphasizes the importance of

agility, which facilitates the separation of corporate units into

modules and services. This approach enables organizations to

achieve flexibility and promote the reuse of resources [34].

Nevertheless, the task of preserving a monolithic design

might present difficulties as applications mature, resulting in

complexities in comprehension and upkeep. In contrast,

microservice architectures promote the development of

systems using smaller, functionally independent services that

are loosely connected. This approach has been shown to

enhance maintainability [31]. The motivation for

transitioning from a monolithic to a modular architecture can

be attributed to the requirement for enhanced flexibility and

scalability, particularly within the framework of emerging

development methodologies such as DevOps [35]. In

general, the benefits of employing a modular monolith

software architecture are rooted in its adaptability and

capacity for reusability. Conversely, the drawbacks

encompass potential performance drawbacks and the

enduring difficulties associated with sustaining a monolithic

architecture throughout its lifespan.

3. Case Studies and Success Stories
Shopify, a major Ruby on Rails codebase, initially used

a monolithic architecture for billing, product updates, and

delivery. However, the advantages of monolithic

architectures outweighed their disadvantages, leading to a

shift to a modular monolith. This approach established and

respected component boundaries, expediting development

and deployment. Monolithic architectures were easy to create

and deploy, but they also had drawbacks, such as increased

DevOps time and decreased application resiliency and

security. Shopify implemented modular monoliths, also

known as “Componentization,” to address these issues. The

team divided the codebase to improve code organization and

adhere to real-world principles. After extensive stakeholder

research and input, this was implemented in a single

comprehensive pull request. Shopify developed a tool called

Wedge to track component isolation and decouple business

domains. The tool monitors the progress of each

component’s isolation, identifying violations of domain

boundaries and data coupling across boundaries. In the long

term, the team aims to programmatically enforce limits to

ensure each component only imports its explicitly dependent

components and eliminates accidental and circular

https://www.thoughtworks.com/en-us/insights/blog/microservices/modular-monolith-better-way-build-software

Kalpesh Barde / IJCTT, 71(10), 20-27, 2023

25

dependencies. In conclusion, no initial system architecture is

without drawbacks, and the choice of software architecture

depends on the scale of the application and is always

evolving. [8]

Root’s expedition in handling the obstacles of a swiftly

expanding startup is delineated in this comprehensive article.

Initially, they confronted the intricacies of team and

technology expansion by adopting a MonolithFirst approach,

constructing a greenfield application with a select few

engineers. However, anticipating future growth, they

transitioned into a Modular Monolith methodology. This

technique entailed organizing their Rails project without a

central directory, effectively compartmentalizing their code

through the utilization of gems and engines. They

successfully eradicated circular dependencies by establishing

distinct architectural boundaries, implementing a robust test

suite, and harnessing tools such as Bundler and the observer

pattern. They enhanced the overall architecture of their

application.

This Modular Monolith approach enabled them to

efficiently manage modifications and improve code clarity

by structuring it around domain concepts. It empowered

them to effectively differentiate between stateful and

stateless logic. Their experience exemplified the simplicity

yet potent scalability of the Modular Monolith concept for

managing a burgeoning team and evolving software

requirements.[38]

In deciding on the architectural framework for a system,

it is crucial to carefully evaluate the factors of scalability and

domain complexity. This discussion delves into the

comparison between modular monoliths and microservices,

elucidating the challenges presented by issues like JAR hell

and circular dependencies. The Apache Isis framework has

emerged as a potential option that effectively addresses

cross-cutting concerns, allowing developers to concentrate

their efforts on complex business challenges.

The essay emphasizes the importance of implementing

organized database management and ensuring coordinated

operations among individual modules. Furthermore, this

study addresses the selection of platforms for monolithic and

microservices-based systems, using Estatio as a case study.

Estatio is an invoicing system developed using Apache Isis.

The ultimate choice between a monolithic or microservices

architecture is contingent upon finding a delicate equilibrium

between the domain’s complexities and the system’s

scalability needs. The aforementioned discoveries provide

significant contributions to the scholarly discourse within the

domain of system architecture.[36]

Google’s Service Weaver framework allows writing

applications as a modular monolith and deploying them as a

set of microservices.

The binary in Service Weaver is organized as a set of

modules or components, with all code residing within a

singular binary.

Service Weaver splits up the application by components,

enabling it to run independently and on distinct machines.

[37]

Therefore, the article discusses how Service Weaver

enables the development and deployment of applications as

modular monoliths, which can then be split into

microservices.

4. Conclusion
The choice of software architecture is a critical decision

in developing efficient payment systems within the fintech

domain. This study has explored three prominent

architectural approaches: Monolithic architecture,

Microservices architecture, and Modular Monolithic

architecture. Each approach has its advantages and

limitations, making it essential to assess their suitability for

payment system development.

Monolithic architecture, characterized by a single, self-

contained codebase, offers advantages in terms of

performance and reduced latency, making it suitable for

applications with moderate traffic. However, it suffers from

scalability and update flexibility limitations, making it less

ideal for rapidly evolving systems.

On the other hand, Microservices architecture provides

flexibility, scalability, and independence for individual

services. It excels in handling increased loads and offers

resilience. Yet, it introduces network communication and

security complexities, making it challenging for some

applications.

Modular Monolithic architecture emerges as a middle

ground between the two. It retains the benefits of a

comprehensive domain model and modularization while

minimizing the complexities associated with microservices.

Organizations like Shopify, Eurocommercial Properties

(Estatio), Google and Root have successfully adopted this

approach to streamline development and maintainability.

The decision to choose a Modular Monolithic

architecture as the first choice for developing efficient

payment systems depends on various factors. It offers the

advantages of clear domain modeling, ease of maintenance,

and a gradual path toward microservices adoption. However,

it comes with performance trade-offs due to inter-service

communication.

In conclusion, while Modular Monolithic architecture

presents a promising option, there is no one-size-fits-all

solution. The choice should be based on the specific

requirements, scalability needs, and complexities of the

Kalpesh Barde / IJCTT, 71(10), 20-27, 2023

26

payment system in question. It is crucial for organizations to

carefully evaluate these factors and consider their long-term

goals when selecting the most suitable software architecture.

Furthermore, ongoing research and industry best practices

will continue to shape the landscape of software architecture,

making it imperative for fintech companies to stay informed

and adaptable in their approach to payment system

development.

References

[1] James Lewis, and Martin Fowler, “Microservices,” Martinfowler.com, 2014. [Google Scholar] [Publisher Link]

[2] Chandler Harris, “Microservices vs. Monolithic Architecture,” Atlassian, 2023. [Google Scholar] [Publisher Link]

[3] Diogo Faustino et al., “Stepwise Migration of a Monolith to a Microservices Architecture: Performance and Migration Effort

Evaluation,” arXiv, pp. 1-12, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice: Software Architect Practice, Pearson Education, pp. 1-

589, 2012. [Google Scholar] [Publisher Link]

[5] Dewayne E. Perry, and Alexander L. Wolf, “Foundations for the Study of Software Architecture,” ACM Sigsoft Software Engineering

Notes, vol. 14, no.4, pp. 40-52, 1992. [CrossRef] [Google Scholar] [Publisher Link]

[6] Humberto Cervantes, and Rick Kazman, “Designing Software Architectures: A Practical Approach, Pearson Education, pp. 1-320,

2016. [Google Scholar] [Publisher Link]

[7] Omar Al-Debagy, and Peter Martinek, “A Comparative Review of Microservices and Monolithic Architectures,” 2018 IEEE 18th

International Symposium on Computational Intelligence and Informatics (CINTI), pp. 149-154, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Kirsten Westeinde, Deconstructing the Monolith: Designing Software that Maximizes Developer Productivity, Shopify, 2019. [Online].

Available: https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity

[9] Freddy Tapia et al., “From Monolithic Systems to Microservices: A Comparative Study of Performance,” Applied Sciences, vol. 10, no.

17, pp. 1-35, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Nuha Alshuqayran, Nour Ali, and Roger Evans, “A Systematic Mapping Study in Microservice Architecture,” 2016 IEEE 9th

International Conference on Service-Oriented Computing and Applications (SOCA), pp. 44-51, 2016. [CrossRef] [Google Scholar]

[Publisher Link]

[11] Luciano Baresi, and Martin Garriga, Microservices: The Evolution and Extinction of Web Services?, Microservices, pp. 3-28, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Ran Mo et al., “The Existence and Co-Modifications of Code Clones within or Across Microservices,” Proceedings of the 15th

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), no. 22, pp. 1-11, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[13] Nicola Dragoni et al., Microservices: Yesterday, Today, and Tomorrow, Present and Ulterior Software Engineering, pp. 195-216, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Pooyan Jamshidi et al., “Microservices: The Journey So Far and Challenges Ahead,” IEEE Software, vol. 35, no. 3, pp. 24-35, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[15] Alan Sill, “The Design and Architecture of Microservices,” IEEE Cloud Computing, vol. 3, no. 5, pp. 76-80, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[16] Sean Whitesell, Rob Richardson, and Matthew D. Groves, Introducing Microservices, Pro Microservices in .NET 6, pp. 1-27, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[17] Mohamed Ibrahim Elkholy, and Marwa A. Marzok, “Trusted Microservices: A Security Framework for Users’ Interaction with

Microservices Applications,” Journal of Information Security and Cybercrimes Research, vol. 5, no. 2, pp. 135-143, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[18] Jeremy M.R. Martin, “Designing and Verifying Microservices Using CSP,” 2021 IEEE Concurrent Processes Architectures and

Embedded Systems Virtual Conference (COPA), pp. 1-4, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] Simon Eismann et al., “Microservices: A Performance Tester’s Dream or Nightmare?,” Proceedings of the ACM/SPEC International

Conference on Performance Engineering, pp. 138-149, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[20] Khaled Sellami et al., “Improving Microservices Extraction Using Evolutionary Search,” Information and Software Technology, vol.

151, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[21] Catalin Strimbei et al., “Software Architectures-Present and Visions,” Informatica Economică, vol. 19, no. 4, pp. 13-27, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[22] Luís Nunes, Nuno Santos, and António Rito Silva, From a Monolith to a Microservices Architecture: An Approach Based on

Transactional Contexts, European Conference on Software Architecture, pp. 37-52, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5DJames+Lewis%2C+and+Martin+Fowler%2C+%E2%80%9CMicroservices&btnG=
https://martinfowler.com/articles/microservices.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CHANDLER+HARRIS+Microservices+vs.+monolithic+architecture&btnG=
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://doi.org/10.48550/arXiv.2201.07226
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stepwise+Migration+of+a+Monolith+to+a+Microservices+Architecture%3A+Performance+and+Migration+Effort+Evaluation&btnG=
https://arxiv.org/abs/2201.07226
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Architecture+in+Practice%3A+Software+Architect+Practice_c3&btnG=
https://www.google.co.in/books/edition/Software_Architecture_in_Practice/jpUHuAAACAAJ?hl=en
https://doi.org/10.1145/141874.141884
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Foundations+for+the+study+of+software+architecture&btnG=
https://dl.acm.org/doi/abs/10.1145/141874.141884
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+Software+Architectures%3A+A+Practical+Approach&btnG=
https://www.google.co.in/books/edition/Designing_Software_Architectures/G30JDAAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1109/CINTI.2018.8928192
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Review+of+Microservices+and+Monolithic+Architectures&btnG=
https://ieeexplore.ieee.org/abstract/document/8928192/authors#authors
https://doi.org/10.3390/app10175797
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+Monolithic+Systems+to+Microservices%3A+A+Comparative+Study+of+Performance&btnG=
https://www.mdpi.com/2076-3417/10/17/5797
https://doi.org/10.1109/SOCA.2016.15
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Mapping+Study+in+Microservice+Architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/7796008
https://doi.org/10.1007/978-3-030-31646-4_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microservices%3A+The+Evolution+and+Extinction+of+Web+Services%3F&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-31646-4_1
https://doi.org/10.1145/3475716.3475784
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Existence+and+Co-Modifications+of+Code+Clones+within+or+across+Microservices&btnG=
https://dl.acm.org/doi/abs/10.1145/3475716.3475784
https://doi.org/10.1007/978-3-319-67425-4_12
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microservices%3A+Yesterday%2C+Today%2C+and+Tomorrow&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/MS.2018.2141039
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microservices%3A+The+Journey+So+Far+and+Challenges+Ahead&btnG=
https://ieeexplore.ieee.org/abstract/document/8354433
https://doi.org/10.1109/MCC.2016.111
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Design+and+Architecture+of+Microservices&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Design+and+Architecture+of+Microservices&btnG=
https://ieeexplore.ieee.org/abstract/document/7742259
https://doi.org/10.1007/978-1-4842-7833-8_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introducing+Microservices+Sean+Whitesell&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-7833-8_1
https://doi.org/10.26735/QOPM9166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Trusted+Microservices%3A+A+Security+Framework+for+Users%27+Interaction+with+Microservices+Applications&btnG=
https://journals.nauss.edu.sa/index.php/JISCR/article/view/2132
https://doi.org/10.1109/COPA51043.2021.9541471
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+and+Verifying+Microservices+Using+CSP&btnG=
https://ieeexplore.ieee.org/abstract/document/9541471
https://doi.org/10.1145/3358960.3379124
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microservices%3A+A+Performance+Tester%27s+Dream+or+Nightmare%3F&btnG=
https://dl.acm.org/doi/abs/10.1145/3358960.3379124
https://doi.org/10.1016/j.infsof.2022.106996
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+microservices+extraction+using+evolutionary+search&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584922001264
https://doi.org/10.12948/ISSN14531305/19.4.2015.02
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Architectures+-+Present+and+Visions&btnG=
https://revistaie.ase.ro/content/76/02%20-%20Strimbei,%20Dospinescu,%20Strainu,%20Nistor.pdf
https://doi.org/10.1007/978-3-030-29983-5_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+a+Monolith+to+a+Microservices+Architecture%3A+An+Approach+Based+on+Transactional+Contexts&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-29983-5_3

Kalpesh Barde / IJCTT, 71(10), 20-27, 2023

27

[23] Judith A. Stafford, and Alexander L. Wolf, “Software architecture,” Component-Based Software Engineering: Putting the Pieces

Together, pp. 371-387, 2001. [Google Scholar] [Publisher Link]

[24] David Garlan, and Dewayne Perry, “Introduction to the Special Issue on Software Architecture,” IEEE Transactions on Software

Engineering, vol. 21, no. 4, pp. 269-274, 1995. [Google Scholar] [Publisher Link]

[25] Rikard Land, “A Brief Survey of Software Architecture,” Mälardalen Real-Time Research Center (MRTC) Report, pp. 1-15, 2002.

[Google Scholar] [Publisher Link]

[26] Robert L. Glass, “Silver Bullet” Milestones in Software History,” Communications of the ACM, vol. 48, no. 8, pp. 15-18, 2005.

[CrossRef] [Google Scholar] [Publisher Link]

[27] Nabor C. Mendonça et al., “The Monolith Strikes Back: Why Istio Migrated from Microservices to a Monolithic Architecture,” IEEE

Software, vol. 38, no. 5, pp. 17-22, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[28] Salvatore Augusto Maisto, Beniamino Di Martino, and Stefania Nacchia, From Monolith to Cloud Architecture Using Semi-Automated

Microservices Modernization, International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Advances on P2P,

Parallel, Grid, Cloud and Internet Computing, vol. 96, pp. 638-647, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[29] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen, Challenges when Moving from Monolith to Microservice Architecture,

International Conference on Web Engineering, Current Trends in Web Engineering, volume 10544, pp. 32-47, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[30] Justas Kazanavičius, Dalius Mažeika, and Diana Kalibatienė, “An Approach to Migrate a Monolith Database into Multi-Model Polyglot

Persistence Based on Microservice Architecture: A Case Study for Mainframe Database,” Applied Sciences, vol. 12, no. 12, pp. 1-29,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[31] Alex Mathai et al., “Monolith to Microservices: Representing Application Software through Heterogeneous Graph Neural Network,”

arXiv, pp. 1-15, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[32] Justin Scott Lowery, and Frank Anthony Nuzzi, “Modular Web Content Software Architecture,” United States Patent Application, pp.

1-13, 2019. [Google Scholar] [Publisher Link]

[33] Cody Allard et al., “Modular Software Architecture for Fully Coupled Spacecraft Simulations,” Journal of Aerospace Information

Systems, vol. 15, no. 12, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[34] Nuno Gonçalves et al., “Monolith Modularization Towards Microservices: Refactoring and Performance Trade-offs,” 2021 IEEE 18th

International Conference on Software Architecture Companion (ICSA-C), pp. 1-8, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[35] Mohammad Raji, and Behzad Montazeri, “On the Relationship between Modularity and Stability in Software Packages,” arXiv, pp. 1-4,

2018. [CrossRef] [Google Scholar] [Publisher Link]

[36] Dan Haywood, In Defence of the Monolith, Part 2, InfoQ, 2017. [Online]. Available: https://www.infoq.com/articles/monolith-defense-

part-2/

[37] Matt Campbell, Google Service Weaver Enables Coding as a Monolith and Deploying as Microservices, InfoQ, 2023. [Online].

Available: https://www.infoq.com/news/2023/03/google-weaver-framework/

[38] Dan Manges, The Modular Monolith: Rails Architecture, Medium, 2018. [Online]. Available: https://medium.com/@dan_manges/the-

modular-monolith-rails-architecture-fb1023826fc4

[39] Rahul Garg, When (Modular) Monolith is the Better Way to Build Software, Thoughtworks, 2023. [Online]. Available:

https://www.thoughtworks.com/en-us/insights/blog/microservices/modular-monolith-better-way-build-software

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Judith%2C+A.%2C+Stafford.%2C+Alexander%2C+L.%2C+Wolf.+%282001%29.+Software+architecture&btnG=
https://dl.acm.org/doi/abs/10.5555/379381.379549
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+the+Special+Issue+on+Software+Architecture&btnG=
https://dl.acm.org/doi/10.5555/205313.205314
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Brief+Survey+of+Software+Architecture&btnG=
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c3e059930bc0f068e8308ad24ad54e121142bc0b
https://doi.org/10.1145/1076211.1076225
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22Silver+bullet%22+milestones+in+software+history.+Communications+of+The+ACM%2C++doi%3A+10.1145%2F1076211.1076225&btnG=
https://dl.acm.org/doi/abs/10.1145/1076211.1076225
https://doi.org/10.1109/MS.2021.3080335
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Monolith+Strikes+Back%3A+Why+Istio+Migrated+From+Microservices+to+a+Monolithic+Architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/9520758
https://doi.org/10.1007/978-3-030-33509-0_60
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+Monolith+to+Cloud+Architecture+Using+Semi-automated+Microservices+Modernization&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_60#citeas
https://doi.org/10.1007/978-3-319-74433-9_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Challenges+When+Moving+from+Monolith+to+Microservice+Architecture&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-74433-9_3
https://doi.org/10.3390/app12126189
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Approach+to+Migrate+a+Monolith+Database+into+Multi-Model+Polyglot+Persistence+Based+on+Microservice+Architecture%3A+A+Case+Study+for+Mainframe+Database&btnG=
https://www.mdpi.com/2076-3417/12/12/6189
https://doi.org/10.48550/arXiv.2112.01317
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Monolith+to+Microservices%3A+Representing+Application+Software+through+Heterogeneous+GNN&btnG=
https://arxiv.org/abs/2112.01317
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lowery%2C+Justin%2C+Scott.%2C+Nuzzi%2C+Frank%2C+Anthony+Modular+Web+Content+Software+Architecture&btnG=
https://patents.google.com/patent/US20190179620A1/en
https://doi.org/10.2514/1.I010653
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modular+Software+Architecture+for+Fully+Coupled+Spacecraft+Simulations&btnG=
https://arc.aiaa.org/doi/abs/10.2514/1.I010653
https://doi.org/10.1109/ICSA-C52384.2021.00015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Monolith+Modularization+Towards+Microservices%3A+Refactoring+and+Performance+Trade-offs&btnG=
https://ieeexplore.ieee.org/abstract/document/9425828
https://doi.org/10.48550/arXiv.1812.01061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Relationship+Between+Modularity+and+Stability+in+Software+Packages&btnG=
https://arxiv.org/abs/1812.01061
https://www.infoq.com/articles/monolith-defense-part-2/
https://www.infoq.com/articles/monolith-defense-part-2/
https://www.infoq.com/news/2023/03/google-weaver-framework/
https://medium.com/@dan_manges/the-modular-monolith-rails-architecture-fb1023826fc4
https://medium.com/@dan_manges/the-modular-monolith-rails-architecture-fb1023826fc4
https://www.thoughtworks.com/en-us/insights/blog/microservices/modular-monolith-better-way-build-software

